CELLIANT® TECHNOLOGY / SUMMARY OF CLINICAL STUDIES | DATE | TITLE | PRIMARY
INVESTIGATOR | SPONSORING
INSTITUTION | SUMMARY
RESULTS | PUBLICATION | NUMBER OF
SUBJECTS | |---------------|--|---|--|---|--|-----------------------| | 2013-
2014 | A Single Center Prospective Comparative
Study to Evaluate the Performance of a
Upper Torso Garment Containing 100%
Celliant Fibers that Emits Far Infrared (FIR)
from Ceramic Particles Contained Within
the Fibers in Healthy Subjects | Dr. Ian Gordon | Long Beach Memorial
VA Hospital
Western IRB | An average TCPO2 gain of over
8% across 71% of all subjects
with clinically signifcant
differences at a 99% degree of
confidence. | Submitted | 153 | | 2012 | Impacts of Subjects Socks with the
Application of Celliant Technical Fibers on
Trancutaneous Oxygen Pressure | Dr. Li Shaojing | Academy of
Chinese Sciences | An average TCPO2 gain of
17% in subject's foot. | Abstract | 100 | | 2012 | Effect of Celliant Materials on Pain and
Strength with Chronic Elbow and Wrist
Pain | Dr. lan Gordon | University of CA, Irvine
Long Beach Veteran's
Affairs Medical Center | Over 10% increase in grip strength. | N/A | 70 | | 2011 | Influence of Celliant on Athlete
Performance & Recovery | Dr. Darren
Stefanyshyn /
Dr. Jay Worobets | University of Calgary
Human Performance
Laboratory | Club cyclists V02 reduced by 1.8%. | Research Journal
of Textile
and Apparel | 12 | | 2008-
2011 | Double blind, placebo controlled,
crossover trial on the effect of Optically
Modified Polyethylene Terephthalate Fiber
mattress covers on sleep disturbances in
patients with chronic back pain | Dr. Marcel Hungs /
Dr. Annabel Wang | University of CA, Irvine
Medical Center, Orange
CA | Nighttime awakenings
reduced, sleep quality and
sleep efficiency improved. | Abstract | 6 | | 2009 | Effect of Garment with 42%
Celliant fiber on TCP02 Levels and Grip
Strength in Healthy Subjects | Dr. lan Gordon | University of CA, Irvine
Long Beach Veteran's
Affairs Medical Center | An average TCPO2 gain of over 7% and an average gain in grip strength of 12%. | Abstract | 51 | | 2009 | Effect of Optically Modified
Polyethylene Terephthalate Fiber
Socks on Chronic Foot Pain | Dr. lan Gordon /
Dr. Robyn York | University of CA, Irvine
Medical Center, Orange
CA | Statistically significant reduction of pain and improved comfort for subjects. | BioMed Central
Complementary
& Alternative
Medicine | 55 | ## CELLIANT® TECHNOLOGY / SUMMARY OF CLINICAL STUDIES (CONTINUED) | DATE | TITLE | PRIMARY
INVESTIGATOR | SPONSORING
INSTITUTION | SUMMARY
RESULTS | PUBLICATION | NUMBER OF
SUBJECTS | |------|---|-------------------------|--|---|-------------|-----------------------| | 2005 | Celliant Study of Thirteen Healthy
Subjects | Dr. Graham McClue | University of
Texas A&M
Houston, Texas | An average increase in TCPO2
levels from 10% to 24%. | Abstract | | | 2003 | Improving Blood Flow with Celliant
in the Hands and Feet of High-Risk
Diabetics | Dr. Lawrence Lavery | Loyola University
Chicago, Chicago, IL | An average increase in
TCPO2 levels from 12% in the
hands and 8% in the feet. | Abstract | 20 | ## CELLIANT® TECHNOLOGY / SUMMARY OF PHYSICAL STUDIES | DATE | TITLE | PRIMARY
INVESTIGATOR | SPONSORING
INSTITUTION | SUMMARY
RESULTS | PUBLICATION | |------|--|-------------------------|---|--|-------------------------------------| | 2012 | Far infrared radiation (FIR): Its biological effects and Meidcal Applications | Dr. Michael Hamblin | Harvard/
Wellman Center for
Photomedicine | Far Infrared Radiation (FIR)
Its Biological Effects and
Medical Applications. | Photonics and
Lasers in Medicine | | 2016 | Engineered emissivity of textile fabrics by the inclusion of ceramic particles | Dr. David Anderson | Exponent | Emissivity increased by .14
MW per CM2 at fabric
temperature of 32 Celsius
with a 42% Celliant fabric vs.
control. | Optics Express | | 2017 | Infrared radiative properties and thermal modeling of ceramic-embedded textile fabrics | Dr. David Anderson | Exponent | Emissivity increased by approximately 10x when sunlight is also used to power Celliant technology. | Biomedical Optics
Express | | | | | | | | | | | | | | |